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Abstract: 

The purpose of this article is to study the portability of a non-intrusive and free of any external 

/ internal disturbance diagnosis tool devoted to the monitoring of the State of Health (SoH) of 

PEM Fuel Cell (PEMFC) stack. The tool is based on a thorough analysis of the stack voltage 

signal using a multifractal formalism and wavelet leaders. It offers well-suited signatures 

indicators on the SoH of the Fuel Cell. Some relevant descriptors extracted from these patterns 

(singularity features) are used in the frame of Machine Learning approaches to allow the 

PEMFC fault identification. The proposed diagnosis strategy is evaluated with two different 

PEMFC stacks. The first one is designed for automotive applications and the second one is 

dedicated to stationary use (micro combined heat and power - µCHP application). The 

classification results obtained for the both stacks indicate that the proposed PEMFC diagnosis 

tool allows identifying simple operating faults as well as more complicated operating situations 

combining several fault types. 
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1. Introduction 
 

Fuel cells (FC) are considered as a promising alternative way for energy conversion [1]. To 

ensure their durability, reliability and safety, many fault diagnosis and fault tolerant control 

methods have been proposed. These methods can be classified into two groups: model-based 

methods [2-5] and data-driven methods [6-8]. The methods of the first group are very 

cumbersome and complex because they require an in-depth knowledge of the multi-physical 

mechanisms (thermal, electrical, electrochemical, and fluidic ones) which can occur in FC 

systems. They are based on numerous parameters governing its operation, and their values are 

difficult to estimate. Some model-based methods allows a deeper understanding of the FC 

physics but they might be not suitable to provide an accurate / quantitative description of the 

FC performances. Hence, the data-driven techniques attract more and more attention because 

of their simplicity regarding the implementation and the good performances obtained without 

profound system structure knowledge. They are supported by efficient signal processing 

methods as: Fourier transform [9], multi-resolution analysis [10, 11], singularity analysis [12, 

13]. For fault identification and isolation tasks, some works use Electrochemical Impedance 

Spectra (EIS) as normal or faulty operation signatures to supply artificial intelligence 

algorithms (based for instance on fuzzy logic [14] or neural networks [15]) or conventional 

pattern recognition approaches (based on Support Vector Machines (SVM) [16], K-Nearest 

Neighbors (KNN) [13] methods). 

This work aims at studying the portability of an innovative data driven approach dedicated to 

PEMFC diagnosis, named singularity analysis. This method consists in analyzing the pointwise 

singularities stamped in the stack voltage signal for various FC operating conditions. The 

singularity features are then summarized in the form of concave arcs estimated thanks to a set 

of mathematical equations, baptized multifractal formalism [17-19]. The advanced analysis 

tool, named Voltage Singularity Spectrum (VSS) is then obtained using a non-intrusive manner 

and without affecting in any way the FC operation. Indeed, no external additional AC-

solicitation has to be superimposed to the existing DC load current as it is the case in the usual 

EIS operation mode. 

This paper is organized as follow. Section 2 deals with the experimental work and environment 

conducted with two PEMFC stacks. In section 3, a brief mathematical foundation of the 

singularity measurement is given. In section 4, we show how it is possible to make the 

singularity spectrum combined with Machine Learning techniques as a PEMFC diagnosis tool. 

Then, the portability of the proposed tool is discussed. Main conclusions are given in Section 

5. 

 

 

2. Experimental 

 

2.1. Synopsis of the investigated PEM Fuel Cells 

 

In our study, two PEMFC stacks are experimented to evaluate the portability of the proposed 

diagnosis tool. The first one is an 8 cell stack designed for automotive applications and 

manufactured by CEA (Alternative Energies and Atomic Energy Commission). The second one 

is a 12 cell stack dedicated to stationary application (micro Combined Heat and Power - µCHP 
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application). It is designed and marketed by Riesaer Brennstoffzellentechnik GmbH and 

Inhouse Engineering GmbH, Germany. 

The first stack (PEMFCAuto) is made of metallic gas distributor plates. The electrode active 

surface of a cell is equal to 220 cm2. It is fed by air at cathode and pure hydrogen (H2) at anode. 

A summary of the FC nominal operating conditions is given in Table 1. The stack operates with 

a nominal current of 110 A. A picture of the stack is shown in Fig. 1(a). 

The second stack (PEMFCµCHP) is fed by air at cathode, and at anode by a fuel mixture (75 % 

of H2 and 25 % of carbone dioxide - CO2) simulating a reformat. It is made of graphite gas 

distributor plates. The active surface of the electrode is 196 cm2. The stack operates with a 

nominal current of 80 A. A picture of the stack is given in Fig. 1(b). A summary of the FC 

nominal operating parameters and other main characteristics are given in Table 2. 

 

 
Fig. 1. Pictures of the two investigated PEMFC stacks: 

a) 8 cell stack designed for automotives (PEMFCAuto), 

b) 12 cell stack designed for μCHP operation (PEMFCµCHP). 

 

Table 1. PEMFCAuto nominal operating conditions. 

Coolant flow: deionized water 2 l/min 

Anode stoichiometry rate (H2) 1.5 

Cathode stoichiometry rate (air) 2 

Absolute pressure for H2 and air inlets 150 kPa 

Max. anode - cathode pressure gap  30 kPa 

Temperature of the cooling circuit 80°C 

Anode and cathode relative humidity rate 50 % 

Nominal Current 110 A 

 

Table 2. PEMFCµCHP nominal operating conditions. 

Coolant flow: deionized water 3 l/min 

Anode stoichiometry rate (H2 and CO2 mix) 1.3 

Cathode stoichiometry rate (air) 2 

Absolute pressure for H2 and air inlets 150 kPa 

Max. anode - cathode pressure gap 20 kPa 

Temperature of the cooling circuit 75°C 

Anode and cathode relative humidity rate 50 % 

Nominal Current 80 A 
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2.2. Experimental process 

 

The above described PEMFCs were experimented with testbenches developed in the FC 

platform of Belfort, France. It includes mainly: 

- a complete gas conditioning sub-system with gas humidifiers at anode and cathode, 

- a test stand section dedicated to the control of the temperature inside the stack and 

including the FC primary water circuit, 

- an electric / electronic management sub-system, 

- an electronic load. 

 

The monitoring and the control of the FC testbenches parameters are done through National 

Instruments materials and a dedicated software. A Human-Machine Interface (HMI) was also 

developed in-lab using Labview
TM

. 

The purpose of the experimental protocol was to introduce different controlled health states into 

the PEMFC stacks by configuring various operating parameters. Two PEMFC health states 

were set: no stack failure state (when the FC is operating under normal parameters - Ref) and 

with stack failure state (when the FC is operating under abnormal / severe parameters). 

Different scenarios of FC system failure were associated to the changing of different setting 

physical parameters through the control-command interface of the testbenches, namely: cathode 

stoichiometry rate (FSC), anode stoichiometry rate (FSA), gas pressure at anode and cathode 

(P), cooling circuit temperature (T), and relative humidity level (RH) at anode and cathode (by 

controlling the gas dew point temperatures). 

The fault scenarios considered in this work were selected in the framework of two projects: the 

DIAPASON2 project supported by the French National Research Agency (ANR) and the 

“Decentralized energy production” project directed by EFFICACITY, the French R&D 

Institute for urban energy transition. The fault scenarios duplicate various failures that are 

representative of the application environment (electric vehicle or stationary generator). The 

faults considered correspond mainly to potential ineffective operations of the FC system 

ancillaries / actuators or sensors used in the Balance-of-Plant (e.g. failure of the air supply 

subsystem in the FC generator related with the FSC parameter). The parameter levels of the 

faulty modes were specified with the help of the PEMFC manufacturers (CEA LITEN in 

Grenoble - France for the PEMFCAuto stack, and RBZ / Inhouse Engineering GmbH in Berlin - 

Germany for the PEMFCµCHP stack). The trade-offs concerning the parameter ranges explored, 

the selected parameter levels have been found by considering the capabilities of the FC in terms 

of performance (a total FC collapse or severe FC stack degradations had to be avoided), by 

taking into account the technological limitations of the FC test stands, and the possible duration 

of the experimental campaigns as well. 

The set of the tests performed, with the two stacks and according to the degrading operating 

parameters, is reported in Table 3. 
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Table 3. The set of FC operating conditions applied during the experimentation of the two 

stacks: Ref: normal conditions - DFSC: cathode flow fault - DFSA: anode flow fault - DP: 

gas pressure fault - DT: cooling circuit temperature fault - DRH: gas dew point temperature 

fault - DCO: carbon monoxide poisoning (H2+CO). 

The underlined parameter values correspond to the introduced faults. 

The notation ‘ND’ means that the experiment is Not Done. 
 

Ref DFSC DFSA DP DT DRH DCO 

 
Auto µCHP Auto µCHP Auto µCHP Auto µCHP Auto µCHP Auto µCHP Auto µCHP 

FSC 2 2 1.3 2.6 

1.6 

2 2 2 2 2 2 2 2 2 2 

FSA 1.5 1.3 1.5 1.3 1.3 1.5 
1.2 

1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 

P (bar abs) 1.5 0.1 1.5 0.1 1.5 0.1 1.3 ND 1.5 0.1 1.5 0.1 1.5 0.1 

T (°C) 80 70 80 70 80 70 80 70 75 72 

65 

80 70 80 70 

RH (%) 50  50  50 50 50 50 50 50 50 50 ND 46 

54 

50  50  

CO (ppm) 0 0 0 0 0 0 0 0 0 0 0 0 10 ND 

 

 

3. Singularity measurement 

 

Multifractals are the distribution of singularities, all lying on interwoven sets of varying fractal 

dimensions [20]. Multifractals arise in a variety of physical signals in the forms of self-similar 

sub-sets of samples, such as Multifractional Brownian Motion (MBM) signal [21], signals in 

turbulence [22], and temporal series in finance [23]. 

The singularity analysis, also named “multifractal analysis” allows the characterization of data 

by describing globally and geometrically the fluctuations of local regularity, usually measured 

by means of the Hölder exponent ℎ. 

It describes the time ( 𝑡) based fluctuations of the signal given by a function 𝑋(𝑡). This is 

achieved by comparing the local variations of 𝑋(𝑡) around fixed time position 𝑡0, against a local 

power law behavior: 𝑋(𝑡0) is said to belong to 𝐶𝛼(𝑡0) with 𝛼 ≥ 0 if there are a positive constant 

𝐶 and a polynomial 𝑃, satisfying deg (𝑃) < 𝛼, such that |𝑋(𝑡) − 𝑃𝑡0
(𝑡)| ≤ 𝐶|𝑡 − 𝑡0|𝛼. 

The Hölder exponent is defined as the largest 𝛼 such as: ℎ(𝑡0) = sup{𝛼: 𝑋 ∈ 𝐶𝛼(𝑡0)}. 

In practice, when ℎ(𝑡0) takes a value which tends to zero, the signal exhibits a strong singularity 

at 𝑡0 (Fig. 2). 
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Fig. 2. Illustration of two pointwise regularity measures in the signal 𝑋(𝑡) quantified by the 

Hölder exponent ℎ. 

 

The singularity strength regarding the variability of the regularity of 𝑋(𝑡) vs. 𝑡 is usually 

described through the so-called singularity spectrum. Building a singularity spectrum consists 

in associating to each Hölder exponent ℎ the Hausdorff dimension 𝐷(ℎ) of the sets of points 

which exhibit the same value of ℎ: ℎ ⟼ 𝐷(ℎ). 
An example of singularity spectrum is given in Fig. 3. 

 

 
Fig. 3. Example of a singularity spectrum 𝐷(ℎ). 

 

The numerical implementation of the mathematical formula can be achieved using the Wavelet 

Leaders Multifractal Formalism (WLMF).  

Recently, a new formalism called wavelet leaders was proposed from the discrete wavelet 

transform [13,17-19]. Its mathematical basis can be described as follow. 

 

Let us consider a function 𝜓(𝑡) with a compact time (t) support, called mother-wavelet, which 

satisfies the condition: 

 

∫ 𝑡𝑖
𝑅

𝜓(𝑡)𝑑𝑡 ≠ 0, where 𝑖 = 0, 1, … , 𝑁𝜓 − 1 and the vanishing moment 𝑁𝜓 ≥ 1. 
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So, a family of wavelets 𝜓𝑖(𝑡) can be generated; it is sometimes called “daughter-wavelets”. 

The templates of 𝜓(𝑡) dilated to scales 2𝑗 and translated to time positions 2𝑗𝑘 where j is the 

multiresolution parameter, with an orthonormal basis of 𝐿2(𝑅), can be formulated as follow 

[17-19]: 

 

𝜓𝑗,𝑘(𝑡) =
1

2𝑗
𝜓 (

𝑡−2𝑗𝑘

2𝑗
) , 𝑗 ∈ ℤ and 𝑘 ∈ ℤ     (1) 

 

Then, the discrete wavelet transform of a signal 𝑋(𝑡) is defined by the following formula: 

 

𝑑𝑋(𝑗, 𝑘) = ∫ 𝑋(𝑡)2−𝑗𝜓(2−𝑗𝑡 − 𝑘)𝑑𝑡
𝑅

     (2) 

 

Assuming the dyadic interval  and the dyadic cube Γ [17]: 

 

𝜆 = [𝑘. 2𝑗 , (𝑘 + 1). 2𝑗]        (3) 

Γ = 3𝜆 = 𝜆𝑗,𝑘−1 ∪ 𝜆𝑗,𝑘 ∪ 𝜆𝑗,𝑘+1      (4) 

 

Γ denotes the union of the interval 𝜆 with its two adjacent dyadic intervals [17]. Therefore, the 

wavelet leader is the local supremum of the wavelet coefficients located in the dyadic cube over 

all finer scales: 

 

𝐿𝑋(𝑗, 𝑘) = sup𝜆′⊂ Γ|𝑑𝑋,𝜆′|       (5) 

 

This equation indicates that to compute 𝐿𝑋(𝑗, 𝑘), which consists of the largest wavelet 

coefficient 𝑑𝑋(𝑗′, 𝑘′), we consider the indexes (𝑘 − 1)2𝑗 ≤ 2𝑗′
𝑘′ < (𝑘 + 2)2𝑗 at all finer 

scales 2𝑗′ ≤ 2𝑗 . A possible scheme illustrating this definition is given in Fig. 4 [13,19]. 

 

 
Fig. 4. Left: example of a voltage signal decomposition using the Daubechies wavelet ‘db3’. 

Right: a zoom-in on the obtained wavelet coefficient details to give an illustration of the 

principle used in tracking the wavelet leaders LX (black and red circle). They are calculated 

from the discrete wavelet coefficients 𝑑𝑋(𝑗, 𝑘) (green dots) by taking the supremum in the 

time neighborhood Γ = 3𝜆 over all finer scales 2𝑗′ ≤ 2𝑗 (area in gray). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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The purpose of multifractal analysis (or singularity analysis) is to compute an analysis tool, 

namely a singularity spectrum (Fig. 3). This characterization is obtained by analyzing the 

behavior of structure functions, based on the WLMF approach, in the limit of small scales. 

Let us define the structure functions 𝑆𝐿(𝑞, 𝑗), which quantify the spatial average of wavelet 

coefficients at a given scale 2𝑗: 

 

𝑆𝐿(𝑞, 𝑗) =
1

𝑛𝑗
∑ |𝐿𝑋(𝑗, 𝑘)|𝑞𝑛𝑗

𝑘=1        (6) 

 

Where q is the order of the statistical moment, nj ≈ n / 2j is the number of leaders available at 

each scale, and n the length of the sample [18]. 

 

The multifractal formalism consists in evaluating the behavior of the logarithm of structure 

functions in the limit of fine scales. This characterization [17] is given by the scaling exponents 

𝜉𝐿(𝑞): 

 

𝜉𝐿(𝑞) = lim
𝑗→0

inf (
log2 𝑆𝐿(𝑞,𝑗)

𝑗
)       (7) 

 

In other terms, the structure functions 𝑆𝐿(𝑞, 𝑗) exhibit a power law behavior with respect to the 

scale analysis, in the limit of fine scales, and where 𝐶𝑞 is a constant: 

 

𝑆𝐿(𝑞, 𝑗) ≅ 𝐶𝑞2𝑗𝜉𝐿(𝑞)        (8) 

 

The singularity spectrum representing the function ℎ ↦ 𝐷(ℎ) is obtained by the Legendre 

transform of the scaling exponents: 

 

𝐷𝑞(ℎ) = inf𝑞≠0(1 + 𝑞ℎ − 𝜉𝐿(𝑞))      (9) 

 

Let us consider the concept of the Hölder exponent. A positive exponent indicates that the 

function is continuous and has a given number of derivatives. A negative exponent implies that 

the function encloses transitions, jumps, and eventually divergences to infinity. As the last 

characteristics are not observed in the studied voltage signals, we must avoid all negative values 

of h and 𝐷(ℎ). 

To obtain the 𝐷(ℎ) entire curve by the Legendre transform given by Eq. (9), both positive and 

negative values of q-order are needed: 𝑞 ∈ [𝑞−, 𝑞+]. Note that q = q- and q = q+ amplify the 

small and large fluctuations of the signal. 

In this study, both 𝑞− and 𝑞+ are selected to avoid the negative values of the Hölder exponent 

h and Hausdorff dimension 𝐷(ℎ). So, in the case of our study: 𝑞 = −4: 0.5: +5 giving 19 values 

of h and 19 other values of 𝐷(ℎ). 

 

 

4. Voltage Singularity Spectrum (VSS) as diagnosis tool 

 

In this work, we propose to study the portability of the new diagnosis tool based on the 

investigation of singularity measurements stamped in FC stack voltage signals. Indeed, 

measuring local singularities on voltage signals provides suitable information about the 

evolving dynamics of non-stationary and non-linear processes involved in FC systems. 

We assess the generalization and the usefulness of the proposed VSS by establishing the 

diagnosis on two databases issued from the two investigated PEMFC stacks. 
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For the stack PEMFCAuto, 10 scenarios are analyzed (normal and abnormal conditions including 

one fault or more complex situations with 2 or 3 faults occurred simultaneously). 

For the stack PEMFCµCHP, 9 operating conditions (normal and abnormal conditions) are 

studied. 

 

In this aim, we use 30 voltage profiles for each FC operating condition; each voltage profile 

covers 1000 voltage samples acquired at a frequency fa =11Hz (Fig. 5) using the monitoring 

data system of the FC experimental test bench. 

 

To perform the VSS, the analyzing wavelet is selected as Daubechies 3 (‘Db3’) function (with 

3 vanishing moments, Fig. 5). Some examples of VSS computed for the normal conditions and 

abnormal ones are displayed in Fig. 6. As we can observe, the two VSS corresponding to DFSC 

(cathode flow fault) and DT (cooling circuit temperature fault) are shifted from the VSS linked 

with the normal conditions (Ref). Each operating condition set gives its own stamp in the 

morphology of the stack voltage signal, thus characterized by a VSS with specific shape, width, 

and location. The multifractal parameters can therefore be used as discriminant parameters for 

the diagnosis. 

For the faulty operating conditions FSC = 1.3 or T = 72°C, the obtained VSS curves indicate 

clear differences in the values of the singularity features h0, hmin, and hmax (these VSS features 

were described in Fig. 3). The features identification of the VSS plotted in Fig. 6 leads to: 

ℎ0 = 0.53, ℎ𝑚𝑖𝑛 = 0.28, and ℎ𝑚𝑎𝑥 = 0.92 for the normal operating conditions, 

ℎ0 = 0.46, ℎ𝑚𝑖𝑛 = 0.15, and ℎ𝑚𝑎𝑥 = 0.95 for DFSC, 

ℎ0 = 0.48, ℎ𝑚𝑖𝑛 = 0.19, and ℎ𝑚𝑎𝑥 = 0.82 for DT. 

These results reveal a high multifractality and an irregularity degree of the voltage signal 

enhanced by the poor operating conditions resulting from the cathode flow fault and / or the 

cooling circuit temperature fault (overall, the two faulty VSS of Fig. 6 are shifted to the left 

from the normal conditions). This can be related with problems of air diffusion when the stack 

is supplied with a lower cathode flow rate (DFSC), and with a FC drying state when the stack 

temperature exceeds the nominal value (DT). 
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Fig. 5. Stack voltage signal scanned by Daubechies wavelet (Db3) for VSS computing. 

 

 
Fig. 6. Examples of VSS computed on profiles covering 1000 stack voltage samples; for the 

PEMFC nominal operating conditions (Ref) and for two examples of faults: a cathode flow 

fault (DFSC) and a cooling circuit temperature fault (DT). 

 

Singularity features are then used to supply the Machine Learning approach, named K-Nearest 

Neighbors (KNN). KNN is a non-parametric learning algorithm, which consists in assigning 

unlabeled features to the class of the most similar labeled examples. The similarity can be 

estimated by using Euclidean metric for example. 

 

To improve the performance of the fault classification method, the minimum Redundancy - 

Maximum Relevance (mRMR) technique [12,24] is used to select some relevance features 

offering the best classification rates. The mRMR feature selection technique was recently 

introduced for gene selection application [24]. 
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This method is based on the mutual information estimates, which reveals the statistical 

dependence of a feature (x) on an another (y) [12]. 

𝐼(𝑥, 𝑦) is the mutual information between 𝑥 and 𝑦. It is computed as the relative entropy 

between the joint probabilistic distribution 𝑝(𝑥, 𝑦) and the product of marginal distributions 

probabilities 𝑝(𝑥) and 𝑝(𝑦): 
 

𝐼(𝑥, 𝑦) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥,𝑦)

𝑝(𝑥).𝑝(𝑦)
)𝑥,𝑦∈𝑆      (10) 

Where S is the set of features. 

 

The mRMR feature set is obtained by optimizing the following conditions Redundancy 

Minimization and Relevance Maximization: 

 

- Redundancy Minimization: 

 

min 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑥) =
1

|𝑆|
∑ 𝐼(𝑥, 𝑦)𝑥,𝑦∈𝑆      (11) 

Where |𝑆| is the size of the set of features. 

 

- Relevance Maximization: 

 

max 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑥) =
1

|𝑆|
∑ 𝐼(𝐶, 𝑥)𝑥∈𝑆       (12) 

Where 𝐶 = {𝑐1, 𝑐2 … 𝑐𝑛} is the set of the class labels. 

 

The feature score is obtained by combining the two criteria expressed by Eq. (11) and (12): 

 

𝑆𝑐𝑜𝑟𝑒(𝑥) =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑥)

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑥)
       (13) 

 

Or 

 

𝑆𝑐𝑜𝑟𝑒(𝑥) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑥) − 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦(𝑥)    (14) 
 

Equation (13) expresses the Mutual Information Difference (MID) criterion and Eq. (14) 

indicates the Mutual Information Quotient (MIQ) criterion. 

 

Actually, 20 VSS / class are used to generate the learning database and the 10 others serve as 

test data to evaluate the performances of the classifier. Each VSS contains 38 features (19 h 

data and 19 D(h) data). So, by applying the mRMR method on the full feature set (38 features) 

of the VSS combined with 8 statistical moments of the voltage, the good classification rate 

obtained using the top 6 selected features is about 89.4 % for the stack PEMFCAuto , separating 

10 classes (10 FC operating conditions). For the second stack PEMFCµCHP, 9 classes are 

discriminated with a success of 95.5 %. 

 

The best results of the classification rates of the different operating conditions studied are 

embedded in confusion matrixes given by Tables 4 and 5, for the stacks PEMFCAuto and 

PEMFCµCHP respectively. 
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Table 4. Confusion matrix of the good classification rates obtained with mRMR and kNN 

from the VSS computed with the stack voltage signals of the PEMFCAuto. The studied FC 

operating conditions are: Ref: normal conditions - DFSC: cathode flow fault (slight air 

starvation) - DFSA: anode flow fault (slight H
2
 starvation) - DP: gas pressure fault (lower gas 

pressure) - DT: cooling circuit temperature fault (lower stack temperature) - DCO: carbon 

monoxide poisoning (H
2
+CO). 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Ref 87.5 0 0 12.5 0 0 0 0 0 0 

DFSC 0 100 0 0 0 0 0 0 0 0 

DFSA 0 0 100 0 0 0 0 0 0 0 

DP 50 0 0 50 0 0 0 0 0 0 

DT 0 0 0 0 100 0 0 0 0 0 

DCO 0 0 0 0 0 100 0 0 0 0 

DFSC & DP 0 0 0 0 0 0 100 0 0 0 

DFSA & DP 0 0 0 0 0 0 0 71.43 28.57 0 

DFSC & DFSA 0 0 0 0 0 0 0 0 100 0 

DFSC & DFSA & DP 0 0 0 0 0 0 0 0 0 100 

With: 𝐶0 ≡ 𝑅𝑒𝑓̂, 𝐶1 ≡ 𝐷𝐹𝑆𝐶̂, 𝐶2 ≡ 𝐷𝐹𝑆𝐴̂, 𝐶3 ≡ 𝐷𝑃̂, 𝐶4 ≡ 𝐷𝑇̂, 𝐶5 ≡ 𝐷𝐶𝑂̂, 𝐶6 ≡ 𝐷𝐹𝐶𝑆 & 𝐷𝑃̂ , 

 𝐶7 ≡ 𝐷𝐹𝑆𝐴 & 𝐷𝑃̂ , 𝐶8 ≡ 𝐷𝐹𝑆𝐶 & 𝐷𝐹𝑆𝐴̂ , 𝐶9 ≡ 𝐷𝐹𝑆𝐶 & 𝐷𝐹𝑆𝐴 & 𝐷𝑃̂ . 

 

Table 5. Confusion matrix of the good classification rates obtained with mRMR and kNN 

from the VSS computed with the stack voltage signals of the PEMFCµCHP. The studied FC 

operating conditions are: Ref : normal conditions - DFSC
↗
: cathode flow fault (air over-

supply) - DFSC↘: cathode flow fault (slight air starvation) - DFSA
↗
: anode flow fault (H

2
 

over-supply) - DFSA↘ 
: anode flow fault (H

2
 starvation) - DT

↗
: cooling circuit temperature 

fault (higher temperature) - DT↘ 
: cooling circuit temperature fault (lower stack temperature) - 

DRH
↗
: gas dew point temperature fault (higher dew point temperatures) - DRH↘: gas dew 

point temperature fault (lower dew point temperatures). 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 

Ref 100 0 0 0 0 0 0 0 0 

DFSC↗ 0 100 0 0 0 0 0 0 0 

DFSC↘ 0 0 100 0 0 0 0 0 0 

DFSA↗ 0 0 0 90 0 10 0 0 0 

DFSA↘ 0 0 0 0 90 0 0 0 10 

DT↗ 0 0 0 20 0 80 0 0 0 

DT↘ 0 0 0 0 0 0 100 0 0 

DRH↗ 0 0 0 0 0 0 0 100 0 

DRH↘ 0 0 0 0 0 0 0 0 100 

With: 𝑪𝟎 ≡ 𝑅𝑒𝑓̂,  𝑪𝟏 ≡ 𝐷𝐹𝑆𝐶↗̂ ,  𝑪𝟐 ≡ 𝐷𝐹𝑆𝐶↘̂ ,  𝑪𝟑 ≡ DFSA↗̂ ,  𝑪𝟒 ≡ DFSA↘̂ ,  𝑪𝟓 ≡ 𝐷𝑇↗̂ ,  𝑪𝟔 ≡ 𝐷𝑇↘̂ ,  

 𝑪𝟕 ≡ DRH↗ ̂ ,  𝑪𝟖 ≡ DRH↘̂. 

 

Overall, as we can see in Tables 4 and 5, the proposed diagnosis strategy identifies successfully 

several complex operating faults (i.e. slight deflections from the nominal operating conditions, 

and even combination of faults) for both PEMFCAuto and PEMFCµCHP. The diagnosis strategy, 

though, has difficulty separating the pressure fault condition (DP) from the nominal one (Table 

4). The fault related with the pressure parameter, introduced with the level P=1.3 bar abs and 
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corresponding to a small deviation from the nominal value (P=1.5 bar abs), had very little effect 

on the PEMFC operation and thus did not really alter the morphology of the stack voltage signal. 

 

Recent works reported in the literature are dealing with the FC diagnosis issue. We have 

selected two examples of interesting papers, which are closely related with our approach. It is 

not easy to compare directly the results obtained using the different approaches, especially since 

the databases and the fault considered differ more or less. However, some main points of 

comparison can be given below. 

In their paper [25], Zheng et al. present a novel method for PEMFC diagnosis based on artificial 

neural networks, named Reservoir Computing ’RC’, also based on the measurement of the stack 

voltage signal. In this work, five simple faults are studied, namely: CO poisoning, low air 

flowrate, defective cooling, and natural degradation. The studied data are similar to ours. 

However, FC operating scenarios combining two or three faults are not considered. Zheng et 

al. mention in their article that the fault recognition rate (classification rate) is influenced by 

four key RC parameters and by the order in the learning database. However, even in the worst 

case, the good classification rate reaches 88%. 

In the work of Li et al. [16], the PEMFC individual cell voltages are selected as the variables 

leading to the FC diagnosis. Five operating conditions are considered: nominal conditions, low 

pressure level, high pressure level, high cathode stoichiometry, and low relative humidity. The 

diagnosis strategy was implemented on-line successfully. The fault detection task is performed 

by applying Support Vector Machine (SVM) as the pattern classification tool. In our approach, 

the diagnosis tool is based on the only free evolution of the stack voltage, with reduces the 

required instrumentation. In addition, more complex fault situations, including combinations of 

faults, are considered in our work. 

 

 

5. Conclusions 

 

In this study, VSS are computed on voltage signals acquired under different FC operating 

conditions (normal and abnormal, i.e. more or less severe deviations from the normal 

conditions) with considering situations that combine 2 or 3 faults simultaneously. Two stacks 

are investigated: a PEMFCAuto stack that is designed for automotive applications and a 

PEMFCµCHP stack, dedicated to stationary ones.  

Singularity features extracted from the estimated VSS are classified using Machine Learning 

approach, named K-Nearest Neighbors (KNN). 

The obtained classification results show that the proposed PEMFC diagnosis tool allows 

identifying simple operating faults and more complicated states that contain several fault types. 

The diagnosis are realized on two different test stands, for different stack sizes, powers and 

technologies, with different targeted environments of power application. 

In this paper, we demonstrate that the singularity analysis of voltage signal offers a generic 

diagnosis tool for the PEMFC SoH monitoring. One key-point of the method is that the VSS 

can be estimated from the “free” evolution of the stack voltage and without affecting the FC 

operation in any way: no external additional solicitation is required to reveal the SoH patterns. 

 

 

Acknowledgement 

The work performed was done thanks to the French ANR project “DIAPASON 2” (ANR-10-

HPAC-0002)) and in the framework of the “Decentralized energy production” project, directed 

by EFFICACITY, the French R&D Institute for urban energy transition. 

  



14 
 

 

References 

[1] Fuel Cell Industry Review 2015: http://www.fuelcellindustryreview.com. 

[2] M Buchholz, V Brebs. Dynamic Modelling of a Polymer Electrolyte Membrane Fuel Cell 

Stack by Nonlinear System Identification. Fuel Cells 2007; 7:392-401. 

[3] J Mainka, G Maranzana, A Thoaq, J Dillet, S Didierjean, O Lottin. One-dimensional 

Model of Oxygen Transport Impedance Accounting for Convection Perpendicular to the 

Electrode. Fuel Cells 2012; 12(5):848-861. 

[4] S Chevalier, B Auvity, JC Olivier, C Josset, D Trichet, M Machmoum. Multiphysics DC 

and AC models of a PEMFC for the detection of degraded cell parameters. International 

Journal of Hydrogen Energy 2013; 38(26):11609-11618. 

[5] R Petrone, Z Zheng, D Hissel, MC Péra, C Pianese, M Sorrentino, M Béchérif, N Yousfi 

Steiner. A review on model-based diagnosis methodologies for PEMFCs. International 

Journal of Hydrogen Energy 2013; 38:7077-7091. 

[6] Z Zheng, R Petrone, MC Péra, D Hissel, M Béchérif, C Pianese, N Yousfi Steiner, M 

Sorrentino. A review on non-model based diagnosis methodologies for PEM fuel cell 

stacks and systems. International Journal of Hydrogen Energy 2013; 38(21):8914-8926. 

[7] S Giurgia, S Tirnovan, D Hissel, R Outbib. An analysis of fluidic voltage statistical 

correlation for a diagnosis of PEM fuel cell flooding. International Journal of Hydrogen 

Energy 2013; 38(11):4689-4696. 

[8] Z Li, R Outbib, D Hissel, S Giurgia. Data-driven diagnosis of PEM fuel cell: A 

comparative study. Control Engineering Practice 2014; 28:1-12. 

[9] J Chen, B Zhou. Diagnosis of PEM fuel cell stack dynamic behaviors. Journal of Power 

Sources 2008; 177:83-95. 

[10] MA Rubio, K Bethune, A Urquia, J St-Pierre. Proton exchange membrane fuel cell failure 

mode early diagnosis with wavelet analysis of electrochemical noise. International 

Journal of Hydrogen Energy 2016; 41:14991-15001. 

[11] N Yousfi Steiner, D Hissel, P Moçotéguy, D Candusso. Non intrusive diagnosis of 

polymer electrolyte fuel cells by wavelet packet transform. International Journal of 

Hydrogen Energy 2011; 36:740-746. 

[12] D Benouioua, D Candusso, F Harel, L Oukhellou. PEMFC stack voltage singularity 

measurement and fault classification. International Journal of Hydrogen Energy 2014; 

39(36):21631-21637. 

[13] D Benouioua, D Candusso, F Harel, L Oukhellou. The dynamic multifractality in PEMFC 

stack voltage signal as a tool for the aging monitoring. International Journal of Hydrogen 

Energy 2017; 42(2):1466-1471. 

[14] D Hissel, D Candusso, F Harel. Fuzzy-Clustering durability diagnosis of Polymer 

Electrolyte Fuel Cells dedicated to transportation applications. IEEE Transactions on 

Vehicular Technology 2007; 56(5):2414-2420. 

[15] J Kim, I Lee, Y Tak, BH Cho. State-of-Health diagnosis based on hamming neural 

network using output voltage pattern recognition for a PEM fuel cell. International 

Journal of Hydrogen Energy 2012; 37(5):4280-4289. 

[16] Z Li, R Outbib, S Giurgia, D Hissel, S Jemeï, A Giraud, S Rosini. Online implementation 

of SVM based fault diagnosis strategy for PEMFC systems. Applied Energy 2016; 

164:284-293. 

[17] S Jaffard, B Lashermes, P Abry. Wavelet leaders in multifractal analysis, in Wavelet 

Analysis and Applications. Ed. Birkhäuser Verlag. 2006. 

[18] H Wendt, P Abry. Multifractality Tests Using Bootstrapped Wavelet Leaders. IEEE 

Transactions on Signal Processing 2007; 55(10):4811-4820. 

http://www.fuelcellindustryreview.com/
http://www.fuelcellindustryreview.com/


15 
 

[19] D Benouioua, D Candusso, F Harel, L Oukhellou. Multifractal analysis of stack voltage 

based on wavelet leaders: A new tool for PEMFC diagnosis. Fuel Cells 2017; 17(2):217-

224. 

[20] BB Mandelbrot. Fractals Geometry of Nature. Edition. Freeman, San Francisco. 1982. 

[21] P Balança. Some sample path properties of multifractional Brownian motion. Stochastic 

Processes and their Applications 2015; 125(10):3823-3850. 

[22] L Chevillard, B Castaing, E Lévêque, A Arneodo. Unified multifractal description of 

velocity increments statistics in turbulence: Intermittency and skewness. Physica D 2006; 

218:77-82. 

[23] D Grech. Alternative measure of multifractal content and its application in finance. 

Chaos, Solitons and Fractals 2016; 88:183-195. 

[24] Hanchuan Peng's web site. Information on mRMR (minimum Redundancy Maximum 

Relevance Feature Selection). http://home.penglab.com/proj/mRMR/. 2017. 

[25] Z Zheng, S Morando, M-C Péra, D Hissel, L Larger, R Martinenghi, AB Fuentes. Brain-

inspired computational paradigm dedicated to fault diagnosis of PEM fuel cell stack. 

International Journal of Hydrogen Energy 2017; 42(8):5410-5425. 

 

  

http://home.penglab.com/proj/mRMR/
callto:42%20%282017%29%205410-5425


16 
 

Figure captions: 

 

Fig. 1. Pictures of the two investigated PEMFC stacks: 

a) 8 cell stack designed for automotives (PEMFCAuto), 

b) 12 cell stack designed for μCHP operation (PEMFCµCHP). 

 

Fig. 2. Illustration of two pointwise regularity measures in the signal 𝑋(𝑡) quantified by the 

Hölder exponent ℎ. 

 

Fig. 3. Example of a singularity spectrum 𝐷(ℎ). 

 

Fig. 4. Left: example of a voltage signal decomposition using the Daubechies wavelet ‘db3’. 

Right: a zoom-in on the obtained wavelet coefficient details to give an illustration of the 

principle used in tracking the wavelet leaders LX (red circle). These last ones are calculated 

from the discrete wavelet coefficients 𝑑𝑋(𝑗, 𝑘) (green dots) by taking the supremum in the 

time neighborhood Γ = 3𝜆 over all finer scales 2𝑗′ ≤ 2𝑗 (area in gray). 

 

Fig. 5. Stack voltage signal scanned by Daubechies wavelet (Db3) for VSS computing. 

 

Fig. 6. Examples of VSS computed on profiles covering 1000 stack voltage samples; for the 

PEMFC nominal operating conditions (Ref) and for two examples of faults: a cathode flow 

fault (DFSC) and a cooling circuit temperature fault (DT). 
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Table captions: 

 

Table 1. PEMFCAuto nominal operating conditions. 

 

Table 2. PEMFCµCHP nominal operating conditions. 

 

Table 3. The set of FC operating conditions applied during the experimentation of the two 

stacks: Ref: normal conditions - DFSC: cathode flow fault - DFSA: anode flow fault - DP: 

gas pressure fault - DT: cooling circuit temperature fault - DRH: gas dew point temperature 

fault - DCO: carbon monoxide poisoning (H2+CO). 

The underlying parameter values correspond to the introduced faults. 

The notation ‘ND’ means that the experiment is Not Done. 

 

Table 4. Confusion matrix of the good classification rates obtained with MRMR and kNN 

from the VSS computed with the stack voltage signals of the PEMFCAuto. The studied FC 

operating conditions are: Ref: normal conditions - DFSC: cathode flow fault (slight air 

starvation) - DFSA: anode flow fault (slight H
2
 starvation) - DP: gas pressure fault (lower gas 

pressure) - DT: cooling circuit temperature fault (lower stack temperature) - DCO: carbon 

monoxide poisoning (H
2
+CO). 

 

Table 5. Confusion matrix of the good classification rates obtained with mRMR and kNN 

from the VSS computed with the stack voltage signals of the PEMFCµCHP. The studied FC 

operating conditions are: Ref : normal conditions - DFSC
↗
: cathode flow fault (air over-

supply) - DFSC↘: cathode flow fault (slight air starvation) - DFSA
↗
: anode flow fault (H

2
 

over-supply) - DFSA↘ 
: anode flow fault (H

2
 starvation) - DT

↗
: cooling circuit temperature 

fault (higher temperature) - DT↘ 
: cooling circuit temperature fault (lower stack temperature) - 

DRH
↗
: gas dew point temperature fault (higher dew point temperatures) - DRH↘: gas dew 

point temperature fault (lower dew point temperatures). 

 

 


