S. Khanra, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review, Food Bioprod. Process, vol.110, pp.60-84, 2018.

T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, vol.14, pp.217-232, 2010.

R. Bhagea, V. Bhoyroo, and D. Puchooa, Microalgae: the next best alternative to fossil fuels after biomass. A review, Microbiol. Res. (Pavia), vol.10, 2019.

A. Singh, P. S. Nigam, and J. D. Murphy, Mechanism and challenges in commercialisation of algal biofuels, Bioresour. Technol, vol.102, pp.26-34, 2011.

G. B. Leite, A. E. Abdelaziz, and P. C. Hallenbeck, Algal biofuels: Challenges and opportunities, Bioresour. Technol, vol.145, pp.134-141, 2013.

J. Kim, Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv, vol.31, pp.862-876, 2013.

K. Miazek, Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review, Int. J. Mol. Sci, vol.18, 2017.

C. W. Cho, Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement, J. Appl. Phycol, vol.21, pp.683-689, 2009.

A. K. Lee, D. M. Lewis, and P. J. Ashman, Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements, Biomass and Bioenergy, vol.46, pp.89-101, 2012.

D. Y. Kim, Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus, Bioresour. Technol, vol.199, pp.300-310, 2016.

S. Y. Lee, J. M. Cho, Y. K. Chang, and Y. K. Oh, Cell disruption and lipid extraction for microalgal biorefineries: A review, Bioresour. Technol, vol.244, pp.1317-1328, 2017.

A. A. Arnold, Identification of lipid and saccharide constituents of whole microalgal cells by13C solid-state NMR, Biochim. Biophys. Acta -Biomembr, vol.1848, pp.369-377, 2015.

H. G. Gerken, B. Donohoe, and E. P. Knoshaug, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, vol.237, pp.239-253, 2013.

M. Mubarak, A. Shaija, and T. V. Suchithra, A review on the extraction of lipid from microalgae for biodiesel production, Algal Res, vol.7, pp.117-123, 2015.

S. Bensalem, Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device, Bioresour. Technol, vol.257, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789219

M. Kröger, M. Klemm, and M. Nelles, Hydrothermal disintegration and extraction of different microalgae species, Energies, vol.11, pp.1-13, 2018.

E. Günerken, Cell disruption for microalgae biorefineries, Biotechnol. Adv, vol.33, pp.243-260, 2015.

J. Y. Park, Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris, Renew. Energy, vol.79, pp.3-8, 2015.

M. Goettel, C. Eing, C. Gusbeth, R. Straessner, and W. Frey, Pulsed electric fi eld assisted extraction of intracellular valuables from microalgae, vol.2, pp.401-408, 2013.

Y. S. Lai, P. Parameswaran, A. Li, M. Baez, and B. E. Rittmann, Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Bioresour. Technol, vol.173, pp.457-461, 2014.

C. Joannes, C. S. Sipaut, J. Dayou, . Md, S. Yasir et al., The Potential of Using Pulsed Electric Field (PEF) Technology as the Cell Disruption Method to Extract Lipid from Microalgae for Biodiesel Production, Int. J. Renew. Energy Res, vol.5, pp.598-621, 2015.

G. P. Lam, Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans, Algal Res, vol.24, pp.181-187, 2017.

E. H. Harris, D. B. Stern, and G. B. Witman, Chapter 2 -Cell Architecture. Chlamydomonas Sourceb, pp.25-64, 2009.

E. H. Harris, Chlamydomoans as a model organism, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.52, pp.363-406, 2001.

A. Dubini, . Green, and . Energy, Biofuel production from Chlamydomonas reinhardtii, Biochem. Soc, 2011.

M. A. Scranton, J. T. Ostrand, F. J. Fields, and S. P. Mayfield, Chlamydomonas as a model for biofuels and bio-products production, Plant J, vol.82, pp.523-531, 2015.

L. S. Sierra, C. K. Dixon, and L. R. Wilken, Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction, Algal Res, vol.25, pp.149-159, 2017.

K. Roberts, J. M. Phillips, and G. J. Hills, Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. VI. The flagellar collar, Micron, vol.5, pp.341-357, 1969.

D. H. Miller, I. R. Mellman, and D. T. Lamport, The chemical composition of the cell wall of and the concept of a plant cell wall protein, vol.63, pp.420-429, 1974.

U. W. Goodenough and J. E. Heuser, The Chlamydomonas Cell Wall Glycoproteins Analyzed by the Technique and Its Constituent Quick-Freeze, Deep-Etch, vol.101, 1985.

P. Bodénès, Inducing reversible or irreversible pores in Chlamydomonas reinhardtii with electroporation: Impact of treatment parameters, Algal Res, vol.37, pp.124-132, 2018.

D. Qin, Y. Xia, and G. M. Whitesides, Soft lithography for micro-and nanoscale patterning, Nat. Protoc, vol.5, pp.491-502, 2010.

M. R. Kasaai, A comparative study of molecular structure, solution properties and food application for three branched polysaccharides: Amylopectin, glycogen, and dextran, Curr. Trends Polym. Sci, vol.16, pp.49-63, 2012.

S. Bensalem, Extraction of energetic molecules from microalgae, combining the use of electrical field solicitations and mechanical stress within a microfluidic device, Retrieved from HAL database, 2019.
URL : https://hal.archives-ouvertes.fr/tel-02293027

S. Bensalem, Structural changes of Chlamydomonas reinhardtii cells during lipid enrichment and after solvent exposure, Data Br, vol.17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789908

S. G. Ball, L. Dirick, A. Decq, J. Martiat, and R. Matagne, Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii, Plant Science, vol.66, pp.1-9, 1990.

Z. T. Wang, N. Ullrich, S. Joo, S. Waffenschmidt, and U. Goodenough, Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless chlamydomonas reinhardtit, Eukaryot. Cell, vol.8, pp.1856-1868, 2009.

P. Bodénès, F. Lopes, D. Pareau, O. Français, and B. Le-pioufle, Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase, Algal Res, vol.16, pp.357-367, 2016.

G. Saulis, Electroporation of cell membranes: The fundamental effects of pulsed electric fields in food processing, Food Eng. Rev, vol.2, pp.52-73, 2010.

K. C. Smith, R. S. Son, T. R. Gowrishankar, and J. C. Weaver, Emergence of a large pore subpopulation during electroporating pulses, Bioelectrochemistry, vol.100, pp.3-10, 2014.

, Scientific RepoRtS |, vol.10, 2020.